Electric vehicle battery cost dropped 80% in 6 years down to $227/kWh

Tesla is among the automakers staying ahead of the trend. While McKinsey projects that battery pack prices will be below $190/kWh by the end of the decade, Tesla claims to be below $190/kWh since early 2016.

That’s how the automaker manages to achieve close to 30% gross margin on its flagship electric sedan, the Model S.

Source: Electric vehicle battery cost dropped 80% in 6 years down to $227/kWh – Tesla claims to be below $190/kWh | Electrek

Tesla’s new solar energy station will power Hawaii at night

This is the first big project from Tesla and SolarCity since the acquisition. Both companies believe this station is the biggest combination solar panel and storage facility in the world. With approximately 55,000 solar cells spread over about 45 acres, it’ll be tough to find anything larger.

Source: Tesla’s new solar energy station will power Hawaii at night

Tesla’s Battery Revolution Just Reached Critical Mass

But prices for lithium-ion batteries have fallen fast—by almost half just since 2014. Electric cars are largely responsible, increasing demand and requiring a new scale of manufacturing for the same battery cells used in grid storage. California is mandating that its utilities begin testing batteries by adding more than 1.32 gigawatts by 2020. For context, consider this: In 2016, the global market for storage was less than a gigawatt.

Source: Tesla’s Battery Revolution Just Reached Critical Mass – Bloomberg

Tesla Battery Economics: On the Path to Disruption

At the utility scale, it may actually be even more disruptive. Tesla appears to be selling the utility scale models at < $250 / kwh. Multiple utility studies suggest that such a price should replace natural gas peakers and drive gigantic grid-level deployments.

Source: Tesla Battery Economics: On the Path to Disruption | Ramez Naam

Tentative Conclusion: The battery is right on the verge of being cost effective to buy across most of the US for day/night arbitrage. And it’s even more valuable if outages come at a high economic cost.

Can Tesla Power Its Gigafactory with Renewables Alone?

All of the calculations are for energy, not power. In other words, you might produce 2400 MWh per day, but that doesn’t mean you’ll always have 100 MW available at any given instant. Sometimes you’ll generate more, other times less. Obviously there will be no solar production at night and less wind production on calm days. To be fully off-grid, Tesla will need some form of storage. As I surmised in a previous article, Tesla is probably shooting for more than the EV market; it seems logical for them to be looking into grid-level storage as well. What better way to showcase that than to include Li-ion batteries for on-site storage?

via Can Tesla Power Its Gigafactory with Renewables Alone? > ENGINEERING.com.

Startup Cuts Lithium-Ion Battery Costs

So far, SolidEnergy has made small, hand-built battery cells, similar to what you would find in a cell phone, using equipment and experts at an A123 Systems lab near Boston. (A123 Systems went bankrupt last year, and was acquired by the Chinese company Wanxiang.) These experimental cells store 30 percent more energy than conventional lithium-ion batteries, but the company calculates that the approach could eventually lead to a 40 percent improvement.

via Startup Cuts Lithium-Ion Battery Costs | MIT Technology Review.

New device stores electricity on silicon chips

When the researchers tested the coated material they found that it had chemically stabilized the silicon surface. When they used it to make supercapacitors, they found that the graphene coating improved energy densities by over two orders of magnitude compared to those made from uncoated porous silicon and significantly better than commercial supercapacitors.

via New device stores electricity on silicon chips | Research News @ Vanderbilt | Vanderbilt University.

Simple technique puts graphene capacitors on par with lead-acid battery

The resulting material displays all the electrical properties associated with a capacitor, meaning that it can charge and discharge its full capacity almost instantly. But it has a storage density that’s right at the low-end of the range seen in lead-acid batteries. It’s also stable over multiple charge/discharge cycles and holds on to 90 percent of its capacity even after being charged for 300 hours straight.

via Simple technique puts graphene capacitors on par with lead-acid battery | Ars Technica.

For superfast 4G LTE Advanced smartphone and tablet connections, AT&T, Verizon, Sprint, T-Mobile plan new network tests, and rollouts use chipsets from Qualcomm and others

Current phones generally use only one antenna taking one stream of data at a time. LTE Advanced devices will also need more energy storage to do the necessary onboard computation. Without new breakthroughs in batteries or reductions in power consumption by other means (see “Efficiency Breakthrough Promises Smartphones that use Half the Power”), phones will simply get larger.

via For superfast 4G LTE Advanced smartphone and tablet connections, AT&T, Verizon, Sprint, T-Mobile plan new network tests, and rollouts use chipsets from Qualcomm and others | MIT Technology Review.

Will ubiquitous mobile data bring down its cost for low bandwidth users?  We shall see.

Nanostructures Boost Battery Life Fivefold

Some of the most promising battery chemistries—which, in theory, could store several times more energy than today’s lithium-ion batteries and cost much less—have a fatal flaw. They can’t be recharged very often before they stop working, making them useless for applications such as electric vehicles. Now researchers at Stanford have created novel nanostructures that greatly increase the number of times one of these chemistries can be recharged, even to levels high enough for many commercial applications.

via Nanostructures Boost Battery Life Fivefold | MIT Technology Review.