Spinning metal sails could slash fuel consumption, emissions on cargo ships

Rotor sails rely on a bit of aerodynamics known as the Magnus effect. In the 1850s, German physicist Heinrich Gustav Magnus noticed that when moving through air a spinning object such as a ball experiences a sideways force. The force comes about as follows. If the ball were not spinning, air would stream straight past it, creating a swirling wake that would stretch out directly behind the ball like the tail of a comet. The turning surface of a spinning ball, however, drags some air with it. The rotation deflects the wake so that it comes off the ball at an angle, closer to the side of the ball that’s rotating into the oncoming air. Thanks to Isaac Newton’s third law that every action must have an equal and opposite reaction, the deflected wake pushes the ball in the opposite direction, toward the side of the ball that’s turning away from the oncoming air. Thus, the spinning ball gets a sideways shove.

Source: Spinning metal sails could slash fuel consumption, emissions on cargo ships

The Curious Link Between the Fly-By Anomaly and the “Impossible” EmDrive Thruster

The conceptual problems arise with momentum. The system’s total momentum increases as it begins to move. But where does this momentum come from? Shawyer had no convincing explanation, and critics said this was an obvious violation of the law of conservation of momentum.

Source: The Curious Link Between the Fly-By Anomaly and the “Impossible” EmDrive Thruster

McCulloch says there is observational evidence for this in the form of the famous fly by anomalies. These are the strange jumps in momentum observed in some spacecraft as they fly past Earth toward other planets. That’s exactly what his theory predicts.

Gravitational Waves Detected, Confirming Einstein’s Theory

That faint rising tone, physicists say, is the first direct evidence of gravitational waves, the ripples in the fabric of space-time that Einstein predicted a century ago (Listen to it here.). And it is a ringing (pun intended) confirmation of the nature of black holes, the bottomless gravitational pits from which not even light can escape, which were the most foreboding (and unwelcome) part of his theory..

Source: Gravitational Waves Detected, Confirming Einstein’s Theory – The New York Times

“Everything else in astronomy is like the eye,” he said, referring to the panoply of telescopes that have given stargazers access to more and more of the electromagnetic spectrum and the ability to peer deeper and deeper into space and time. “Finally, astronomy grew ears. We never had ears before.”

Quantum Study Suggests ‘Spooky Action’ Is Real.

The scientists placed two diamonds on opposite sides of the Delft University campus, 1.3 kilometers apart.

Each diamond contained a tiny trap for single electrons, which have a magnetic property called a “spin.” Pulses of microwave and laser energy are then used to entangle and measure the “spin” of the electrons.

Source: Sorry, Einstein. Quantum Study Suggests ‘Spooky Action’ Is Real. – The New York Times

A potential weakness of the experiment, he suggested, is that an electronic system the researchers used to add randomness to their measurement may in fact be predetermined in some subtle way that is not easily detectable, meaning that the outcome might still be predetermined as Einstein believed.

Kilogram conflict resolved at last

For decades, metrologists have strived to retire ‘Le Grand K’ — the platinum and iridium cylinder that for 126 years has defined the kilogram from a high-security vault outside Paris. Now it looks as if they at last have the data needed to replace the cylinder with a definition based on mathematical constants.

Source: Kilogram conflict resolved at last : Nature News & Comment

If they are proved right, in 2018, Le Grand K will join the metre as a museum piece. “We’ll keep it,” says Davis, “but it won’t be defining anything anymore.”

Expanding Magnets Have Potential to Energize the World

Because these new magnets also have energy efficient characteristics, they can be used to create a new generation of sensors and actuators with vanishingly small heat signatures, said the researchers. These magnets could also find applications in efficient energy harvesting devices; compact micro-actuators for aerospace, automobile, biomedical, space and robotics applications; and ultra-low thermal signature actuators for sonars and defense applications.

Since these new magnets are composed of alloys that are free of rare-earth elements, they could replace existing rare-earth based magnetostriction alloys, which are expensive and feature inferior mechanical properties, said researchers.

Source: Expanding Magnets Have Potential to Energize the World | UMD Right Now :: University of Maryland

New Device Could Greatly Improve Speech and Image Recognition

Holography is a technique based on the wave nature of light which allows the use of wave interference between the object beam and the coherent background. It is commonly associated with images being made from light, such as on driver’s licenses or paper currency. However, this is only a narrow field of holography.

Holography has been also recognized as a future data storing technology with unprecedented data storage capacity and ability to write and read a large number of data in a highly parallel manner.

Source: UCR Today: New Device Could Greatly Improve Speech and Image Recognition

Kepler’s Three Laws

Kepler’s three laws of planetary motion can be described as follows:

  • The path of the planets about the sun is elliptical in shape, with the center of the sun being located at one focus. (The Law of Ellipses)
  • An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (The Law of Equal Areas)
  • The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. (The Law of Harmonies)

via Kepler’s Three Laws.

The Mathematical Trick That Helped Smash The Record For The Largest Number Ever Factorised By A…

And in any case, because this trick works using only 4 qubits, it can easily be reproduced on any classical computer. So it’s not so useful after all.

via The Mathematical Trick That Helped Smash The Record For The Largest Number Ever Factorised By A… — The Physics arXiv Blog — Medium.

Here’s a paper on this subject:

[1411.6758] Quantum factorization of 56153 with only 4 qubits.

An Introduction to Semiconductor Physics, Technology, and Industry

The simplest place to start is the materials. Silicon is incredibly important as a material in the industry because it’s a semiconductor. Of course, the name is self-explanatory, but there’s more to it. The key here is the band structure. Band structure refers to the “bands” of energy levels that form due to the sheer number of orbital states that can be occupied in molecules. Those that understand how electron orbitals work will point out that each energy level is discrete, but due to the sheer number of orbital configurations, a seemingly continuous distribution of energy can be seen. However, relatively large gaps still exist; known as a band gap, these are an energy state that an electron cannot occupy.

via AnandTech | An Introduction to Semiconductor Physics, Technology, and Industry – Print View.

And on and on it goes.  This is a great writeup for understanding how integrated circuits work.