The Moonrush has begun

On February 21, the first mission of the Moonrush embarked aboard a Falcon 9 rocket. The Beresheet lunar lander built by Israel’s SpaceIL was launched as a secondary payload, sharing the ride with the Indonesian communications satellite PSN-6. After reaching geostationary transfer orbit, Beresheet and the communications satellite separated from the Falcon 9 launcher. The communications satellite will propel itself to geostationary Earth orbit. Meanwhile, Beresheet is slowly raising its orbit. In early April the spacecraft will enter lunar orbit, then land on the Moon.

Source: The Space Review: The Moonrush has begun

SpaceX to Send Privately Crewed Dragon Spacecraft Beyond the Moon Next Year

Once operational Crew Dragon missions are underway for NASA, SpaceX will launch the private mission on a journey to circumnavigate the moon and return to Earth. Lift-off will be from Kennedy Space Center’s historic Pad 39A near Cape Canaveral – the same launch pad used by the Apollo program for its lunar missions. This presents an opportunity for humans to return to deep space for the first time in 45 years and they will travel faster and further into the Solar System than any before them.

Source: SpaceX to Send Privately Crewed Dragon Spacecraft Beyond the Moon Next Year | SpaceX

The Hackers Who Recovered NASA’s Lost Lunar Photos

When they learned through a Usenet group that former NASA employee Nancy Evans might have both the tapes and the super-rare Ampex FR-900 drives needed to read them, they jumped into action. They drove to Los Angeles, where the refrigerator-sized drives were being stored in a backyard shed surrounded by chickens. At the same time, they retrieved the tapes from a storage unit in nearby Moorpark, and things gradually began to take shape. Funding the project out of pocket at first, they were consumed with figuring out how to release the images trapped in the tapes.

via The Hackers Who Recovered NASA’s Lost Lunar Photos | Raw File | WIRED.

The resulting framelets had to be individually reassembled in Photoshop. After kluging through countless engineering problems (try finding a chemical substitute for whale oil to lubricate tape heads), the LOIRP team was able to single out and reproduce the famous earthrise image. This proof of concept brought the first NASA funding in 2008, and the team recently completed processing the entire tape collection.

How to return to the moon in just four years

In a four-launch scenario, the lander would precede the crew to the moon. The first two launches would be a moon injection stage followed by a lunar lander. These two vehicles would rendezvous in Earth’s orbit before the moon injection stage would send the lander ahead to the moon. The next two Falcon launches would carry a second moon injection stage and then the crew in their capsule/service module. After a similar boost in a moon-injection stage, they would meet up with the lander in lunar orbit.

The rest of the mission would be like the Apollo mission — Americans on the moon, once again taking giant leaps for mankind.

via How to return to the moon in just four years | Fox News.

Why We Need a Supercomputer on the Moon

Ouliang Chang floated his lunar supercomputer idea a few weeks ago at a space conference in Pasadena, California. The plan is to bury a massive machine in a deep dark crater, on the side of the moon that’s facing away from Earth and all of its electromagnetic chatter. Nuclear-powered, it would process data for space missions and slingshot Earth’s Deep Space Network into a brand new moon-centric era.

via Why We Need a Supercomputer on the Moon | Wired Enterprise | Wired.com.

Clearly, the business of dreaming up supercomputers in space is not for those who think small.

Tandem satellites probe the Moon’s interior

GRAIL’s two probes, named Ebb and Flow by schoolchildren in a NASA competition, were launched in September 2011 (see ‘Twins to Probe Moon’s Heart’). The first probe began orbiting the Moon on 31 December 2011, with the second joining the next day. By March, they had begun detailed mapping. The two spacecraft exchange radio signals, recording fluctuations in their relative positions that are then used to reveal tiny accelerations and decelerations caused by variations in the Moon’s gravitational field. The average altitude of the primary mission was 55 kilometres —  much lower than the orbit used by the Gravity Recovery and Climate Experiment (GRACE), a similar gravity-mapping mission for Earth that has to fly higher to avoid atmospheric friction. Occasionally, the GRAIL operations team brought the craft lower than 20 kilometres to further improve the resolution of the data. “Nothing beats flying low,” says Zuber.

via Tandem satellites probe the Moon’s interior : Nature News & Comment.

How NASA’s GRAIL Probes Will Map the Moon’s Gravity

How NASA’s GRAIL Probes Will Map the Moon’s Gravity Infographic | Moon Gravity, Phases & Facts | Moon Exploration & NASA Moon Missions, GRAIL Spacecraft | Space.com.

NASA’s twin Grail probes are designed to map the moon’s gravity field like no other spacecraft before. The $496 million mission will use the ultra-precise moon gravity maps to help scientists better understand the moon’s composition and structure, as well as how the moon evolved during its formation. Learn how the Grail mission works in the SPACE.com infographic above.