The second operating system hiding in every mobile phone

The insecurity of baseband software is not by error; it’s by design. The standards that govern how these baseband processors and radios work were designed in the ’80s, ending up with a complicated codebase written in the ’90s – complete with a ’90s attitude towards security. For instance, there is barely any exploit mitigation, so exploits are free to run amok. What makes it even worse, is that every baseband processor inherently trusts whatever data it receives from a base station (e.g. in a cell tower). Nothing is checked, everything is automatically trusted. Lastly, the baseband processor is usually the master processor, whereas the application processor (which runs the mobile operating system) is the slave.

via The second operating system hiding in every mobile phone.

From: Baseband Hacking: A New Frontier for Smartphone Break-ins

Previously, mobile hacking attempts have involved the phone’s operating system or other software, but this one focuses on breaking into a phone’s baseband processor, which is the hardware that sends and receives radio signals to cell towers.

Realtime GPU Audio

While these techniques are widely used and understood, they work primarily with a model of the abstract sound produced by an instrument or object, not a model of the instrument or object itself. A more recent approach is physical modeling- based audio synthesis, where the audio waveforms are generated using detailed numerical simulation of physical objects or instruments.

via Realtime GPU Audio – ACM Queue.

There are various approaches to physical modeling sound synthesis. One such approach, studied extensively by Stefan Bilbao,1 uses the finite difference approximation to simulate the vibrations of plates and membranes. The finite difference simulation produces realistic and dynamic sounds (examples can be found at http://unixlab.sfsu.edu/~whsu/FDGPU). Realtime finite difference-based simulations of large models are typically too computationally-intensive to run on CPUs. In our work, we have implemented finite difference simulations in realtime on GPUs.