Because a SLAM map is three-dimensional, however, it does a better job of distinguishing objects that are near each other than single-perspective analysis can. The system devised by Pillai and Leonard, a professor of mechanical and ocean engineering, uses the SLAM map to guide the segmentation of images captured by its camera before feeding them to the object-recognition algorithm. It thus wastes less time on spurious hypotheses.
More important, the SLAM data let the system correlate the segmentation of images captured from different perspectives. Analyzing image segments that likely depict the same objects from different angles improves the system’s performance.
Source: Object recognition for robots